



**Coupling Binarity and** Asteroseismology: **High-Precision Core** Masses and Ages from Kepler and TESS

**Cole Johnston** 

**KU LEUVEN** 

29 July, 2019







**Cole Johnston** 

**KU LEUVEN** 

29 July, 2019

#### Core masses & ages

He-Core mass at TAMS determines the rest of a star's evolution

Ages are important for exoplanets / galaxies / clusters / etc.

1.2+ 
$$\rm M_{\odot}$$
 Convective cores



## Core masses & ages

Rotation

Pulsations

Magnetism

Tides

Convective boundary mixing Atomic diffusion

etc.











Johnston et al. in prep.

**KU LEUVEN** 

Johnston et al. 2019a





Johnston et al. in prep.

**KU LEUVEN** 

Johnston et al. 2019a





Johnston et al. in prep.

**KU LEUVEN** 

Johnston et al. 2019a



#### Model degeneracies!!!

We don't know what mixing mechanism is at work.

Don't try to fit efficiency of mechanism.

Calibrate core mass





**Table 6.** Monte Carlo Isochrone-cloud modelling 95% confidence in-tervals for CW Cep and U Oph.

| Parameter                 | CW Cep                         | U Oph                           |
|---------------------------|--------------------------------|---------------------------------|
| Age [Myr]                 | 7.0-1                          | $57.5^{+5.0}_{-2.5}$            |
| $M_1  [{ m M}_\odot]$     | $13.00^{+0.1}_{-0.16}$         | $5.08^{+0.07}_{-0.06}$          |
| $M_2  [{ m M}_\odot]$     | $12.00\substack{+0.11\\-0.12}$ | $4.60^{+0.05}_{-0.05}$          |
| $X_{\mathrm{c},1}$        | $0.54\substack{+0.01\\-0.03}$  | $0.48\substack{+0.02\\-0.04}$   |
| $X_{\mathrm{c},2}$        | $0.57\substack{+0.01\\-0.03}$  | $0.51\substack{+0.03 \\ -0.02}$ |
| $M_{ m cc,1}[ m M_\odot]$ | $4.34_{-0.29}^{+0.11}$         | $1.05\substack{+0.08\\-0.11}$   |
| $M_{ m cc,2}[ m M_\odot]$ | $3.86^{+0.12}_{-0.19}$         | $0.93\substack{+0.06\\-0.05}$   |

Pols+1997 / Stancliffe+2015 / Higel & Weiss 2017 / Claret & Torres 2016,2017,2018,2019 / Constantino & Baraffe 2018



Calibrating Core-masses

10 systems / 20 stars 4.5–20  $\rm M_{\odot}$ 

 $\chi^{2}_{1}$ : M,T<sub>eff</sub>,logg  $\chi^{2}_{2}$ : T<sub>eff</sub>,logg





Tkachenko et al. *in prep.* 

## Add asteroseismic info...



#### <u>g-modes</u>:

- 1. Sensitive to core-mass
- 2. Near-core mixing
- 3. Core hydrogen content

Van Reeth et al. 2015a

#### Add asteroseismic info...

Combined information changes solution!

|                                                | KIC 4930889 | SB2   | KIC 6352430 | SB2  |
|------------------------------------------------|-------------|-------|-------------|------|
| Age<br>[Myr]                                   | 85          | 103   | 140         | 205  |
| f <sub>ov</sub>                                | 0.02        | 0.025 | 0.005       | 0.04 |
| $\mathrm{M}_{\mathrm{cc}}[\mathrm{M}_{\odot}]$ | 0.58        | 0.54  | 0.51        | 0.56 |









#### Can explain eMSTO of YMCs <u>for free!</u>

We find ages <u>~20%</u> different to those when fit with a single isochrone



## Take home messages

- 1. <u>MUST</u> account for range of internal mixing efficiencies
- 2. We should calibrate core-mass across spectral type, evol. stage, etc
- 3. TESS will deliver <u>MANY</u> more pulsating EBs
- 4. YMCs with TESS

Perfect time to start reporting core masses



#### Extra slides



#### Calibrating Core-masses

10 systems / 20 stars 4.5-20  $\rm M_{\odot}$ 

 $\chi^{2}_{1}$ : M,T<sub>eff</sub>,logg  $\chi^{2}_{2}$ : T<sub>eff</sub>,logg





Core masses & ages





Johnston et al. in prep.



## The curious case of U Gru



# UVES DDT

Bowman et al. *under review*; Johnston et al. *in prep.* 



#### The curious case of U Gru

Circular eclipsing pulsating Algol system (oEA) A-type primary + cooler companion





## **Binary Asteroseismology**



#### **Absolute Dimensions**

| CW Cep                       | 1012-11-11-11-11-11-11-11-11-11-11-11-11-1 |                          | 111 111 AS A 111 A      |                                  |                                |
|------------------------------|--------------------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------------|
| Parameter                    | Gimenez et al. (1987)                      | Clausen & Gimenez (1991) | Han et al. $(2002)^{a}$ | Han et al. $(2002)^{b}$          | This Work                      |
| $M_1 [M_{\odot}]$            | $11.9\pm0.1$                               | $11.82 \pm 0.14$         | 13.49                   | 12.93                            | $13.00\substack{+0.07\\-0.07}$ |
| $M_2 \left[ M_\odot \right]$ | $11.2 \pm 0.1$                             | $11.09 \pm 0.14$         | 12.05                   | 11.84                            | $11.94\substack{+0.08\\-0.07}$ |
| $R_1 [R_\odot]$              | $5.40 \pm 0.1$                             | $5.48 \pm 0.12$          | 6.03                    | 5.97                             | $5.45^{+0.03}_{-0.06}$         |
| $R_2 [R_\odot]$              | $4.95 \pm 0.1$                             | $4.99 \pm 0.12$          | 4.60                    | 4.56                             | $5.09^{+0.06}_{-0.03}$         |
| $\log g_1$ [dex]             | $4.05\pm0.02$                              | $4.03 \pm 0.02$          | 4.01                    | 3.99                             | $4.079^{+0.010}_{-0.005}$      |
| $\log g_2$ [dex]             | $4.10\pm0.02$                              | $4.09 \pm 0.02$          | 4.19                    | 4.19                             | $4.102^{+0.005}_{-0.010}$      |
| U Oph                        |                                            |                          |                         |                                  |                                |
| Parameter                    | Holmgren et al. (1991)                     | Vaz et al. (2007)        | Budding et al. (2009)   | This Work                        |                                |
| $M_1 \left[ M_\odot \right]$ | $4.93 \pm 0.05$                            | $5.273 \pm 0.091$        | $5.13 \pm 0.08$         | $5.09^{+0.06}_{-0.05}$           |                                |
| $M_2 \left[ M_\odot \right]$ | $4.56 \pm 0.04$                            | $4.783 \pm 0.072$        | $4.56 \pm 0.07$         | $4.58\substack{+0.05\\-0.05}$    |                                |
| $R_1 [R_\odot]$              | $3.29\pm0.06$                              | $3.483 \pm 0.020$        | $3.41 \pm 0.03$         | $3.44_{-0.01}^{+0.01}$           |                                |
| $R_2 [R_\odot]$              | $3.01\pm0.05$                              | $3.109 \pm 0.034$        | $3.08\pm0.03$           | $3.05\substack{+0.01\\-0.01}$    |                                |
| $\log g_1$ [dex]             | $4.10\pm0.01$                              | $4.068 \pm 0.010$        | $4.08\pm0.01$           | $4.073_{-0.004}^{+0.004}$        |                                |
| $\log g_2$ [dex]             | $4.14\pm0.02$                              | $4.128 \pm 0.012$        | $4.12\pm0.01$           | $4.131\substack{+0.004\\-0.004}$ |                                |

**Notes.** Table compares derived fundamental parameters from this work to previous studies of CW Cep (top) and U Oph (bottom). <sup>(a)</sup> Solution derived using spectroscopic values obtained by Popper & Hill (1991) <sup>(b)</sup> Solution derived using spectroscopic values obtained by Stickland et al. (1992)

## CW Cep & U Oph





## CW Cep



## & U Oph

